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1. Introduction

It is well known that noncommutative quantum field theories (NCQFT’s) realized through

the Weyl-Moyal ? product suffer in general from the problem of UV/IR mixing [1]. This

implies that one has to deal with IR singularities for vanishing external momentum. In

order to get rid of the UV/IR mixing in noncommutative gauge field theories (NCGFT’s)

with U(1) gauge group, Slavnov [2, 3] introduced an additional term of the following form

into the action:

1

2

∫

d4xλ ? θµνFµν . (1.1)

Here, λ represents a new dynamical or “quantum” multiplier field and the constant anti-

symmetric tensor (θµν) describes the noncommutativity of space-time coordinates: [xµ ?, xν ]

= iθµν . As a consequence of this so-called Slavnov term, the photon propagator becomes

transversal with respect to the momentum k̃µ = θµνkν . Thereby, insertions of the (gauge

independent) IR singular parts of the one-loop polarization tensor [4]

Πµν
IR(k) =

2g2

π2

k̃µk̃ν

(k̃2)2
, (1.2)
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are expected to vanish in higher-order loop calculations. For an axial gauge-fixing with

(nµ) = (0, 1, 0, 0) this result actually holds [3]. However, for a covariant gauge-fixing, new

problems arise due to the fact that one has new Feynman rules including a λ-propagator,

a mixed λ-photon-propagator and a corresponding vertex — see reference [5] for a detailed

discussion.

In this paper, we present a new approach by identifying the Slavnov term (1.1) with a

topological term. In order to preserve the unitarity of the S-matrix [6], we assume θµν to

be space-like, i.e. θ0i = 0 in suitable space-time coordinates. Furthermore, we can choose

the spatial coordinates in such a way that the only nonvanishing components of the θ-

tensor are θ12 = −θ21 = θ. Thus, the components θij with i, j ∈ {1, 2} can be written as

θij = θεij, where εij is the two-dimensional Levi-Civita symbol.1 The Slavnov term (1.1)

then reads as θ
2

∫

d4xλ?εijFij so that it resembles the action for a 2-dimensional BF model

with Abelian gauge group [7]

SBF =
1

2

∫

d2xφ εijFij . (1.3)

The latter model represents a topological quantum field theory and it is well known that

such theories exhibit remarkable ultraviolet finiteness properties at the quantum level.

In particular, the 3-dimensional Chern-Simons theory and the BF models in arbitrary

space-time dimension represent fully finite quantum field theories. Their perturbative

finiteness relies on the existence of a linear vector supersymmetry (VSUSY for short) which

is generated by a set of fermionic charges forming a Lorentz-vector [8, 9]. Together with the

scalar fermionic charge of the BRST symmetry, they form a superalgebra of Wess-Zumino

type, i.e. a graded algebra which closes on-shell on space-time translations. More precisely,

one has the following graded commutation relations between the BRST operator s and the

operator δµ describing VSUSY:

{s, δµ}Φ = ∂µΦ + contact terms. (1.4)

Here, Φ collectively denotes the basic fields appearing in the topological model under

consideration and contact terms are expressions which vanish if the equations of motion

are used. In this context, the axial gauge plays a special role since the topological field

theories mentioned above are characterized, in this gauge, by the complete absence of

radiative corrections at the loop level.

We note that the noncommutative 2-dimensional BF model is characterized, at least

in the Lorentz gauge, by a VSUSY of the same form as in the commutative case [10].

The present paper is organized as follows. In sections 2, 3 and 4 we discuss the

symmetries of U(1)-NCGFT with Slavnov term along the lines of topological models with an

axial gauge-fixing. In section 5, we then elaborate on the consequences of these symmetries

for higher-order loop calculations and in particular we show that the VSUSY infers the

absence of IR divergences (which was previously pointed out by Slavnov [2, 3]).

1We have εijε
kl = δk

i δl
j − δl

iδ
k
j .
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2. Symmetries of NCGFT with Slavnov term in the axial gauge

2.1 Action

The U(1) gauge field action with Slavnov term and with an axial gauge-fixing [5] is given

by

S = Sinv + Sgf , with

{

Sinv =
∫

d4x (−1
4Fµν ? Fµν + 1

2λ ? θµνFµν)

Sgf =
∫

d4x (B ? nµAµ − c̄ ? nµDµc) ,
(2.1)

where

Fµν = ∂µAν − ∂νAµ − ig [Aµ
?, Aν ] ,

Dµc = ∂µc − ig [Aµ
?, c] . (2.2)

With θ12 = −θ21 = θ as the only nonvanishing components of the θ - tensor, the Slavnov

term reduces to θ
2

∫

d4xλ ? εijFij , i.e. (1.3) written as an integral over 4-dimensional non-

commutative space. The axial gauge-fixing vector nµ appearing in Sgf will be chosen to

lie in the plane of noncommuting coordinates, i.e. the plane (x1, x2), hence n0 = n3 = 0.

We will see below that this allows us to find a VSUSY which is analogous to the one

characterizing the 2-dimensional noncommutative BF model.

2.2 Notation

In order to distinguish the x1, x2-components from the other ones, we will use the follow-

ing notation: Greek indices µ, ν, ρ, σ ∈ {0, 1, 2, 3} correspond to the 4-dimensional space-

time, Latin indices i, j, k, l ∈ {1, 2} label the x1, x2-components and capital Latin indices

I, J,K,L ∈ {0, 3} label the x0, x3-components.

For the particular choices of the axial gauge-fixing vector (nµ) and the deformation

matrix that we specified above, the action (2.1) reads as

S =

∫

d4x

(

−
1

4
Fµν ? Fµν +

θ

2
λ ? εijFij + B ? niAi − c̄ ? niDic

)

. (2.3)

It is worthwhile recalling that the star product is associative and that it has the trace

property
∫

d4x f ? g =

∫

d4x f · g =

∫

d4x g ? f ,

henceforth we can perform cyclic permutations under the integral:

∫

d4x f ? g ? h =

∫

d4xh ? f ? g =

∫

d4x g ? h ? f . (2.4)

This property will often be used in the following.

In order to simplify the notation, we will not spell out the star product symbol in

the sequel: all products between fields (or functions of fields) are understood to be star

products. Furthermore, we assume that the algebra of fields is graded by the ghost-number.

Accordingly, all commutators are considered to be graded with respect to this degree, e.g.
1
2 [c, c] stands for 1

2 {c
?, c} = c ? c and [Aµ, c] stands for [Aµ

?, c] = Aµ ? c − c ? Aµ.

– 3 –
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2.3 Symmetries

The action functional (2.3) is invariant under the BRST transformations

sAµ = Dµc , sc̄ = B ,

sλ = −ig [λ, c] , sB = 0 , (2.5)

sc =
ig

2
[c, c] ,

which are nilpotent, i.e. s2Φ = 0 for Φ ∈ {Aµ, λ, c, c̄, B}. The functional (2.3) is also

invariant under the following VSUSY transformations which are labeled by a vector index

i ∈ {1, 2} and which only involve the x1, x2-components of the fields:

δiAJ = 0 , δic = Ai ,

δiAj = 0 , δic̄ = 0 , (2.6)

δiλ =
εij

θ
nj c̄ , δiB = ∂ic̄ .

The noteworthy feature of these transformations is that they relate the invariant and the

gauge-fixing parts of the action (2.3). Since the operator δi lowers the ghost-number by

one unit, it represents an antiderivation (very much like the BRST operator s which raises

the ghost-number by one unit). Note that it is only the interplay of appropriate choices

for θµν and nµ which leads to the existence of the VSUSY. The crucial point is the choice

of the vector nµ lying in the plane of noncommuting coordinates.

The invariance of the action functional (2.3) under the transformations (2.6) is de-

scribed by the Ward identity

WiS ≡

∫

d4x

(

∂ic̄
δS

δB
+ Ai

δS

δc
+

εij

θ
nj c̄

δS

δλ

)

= 0 . (2.7)

For later reference, we determine the equations of motion associated to the action (2.3).

They are given by δS
δΦ = 0 where Φ denotes a generic field. One finds that

δS

δc
= −niDic̄ ,

δS

δc̄
= −niDic , (2.8a)

δS

δAi
= DµFµi + θεijDjλ + niB − igni[c̄, c] , (2.8b)

δS

δAI
= DµFµI ,

δS

δλ
=

θ

2
εijFij = θF12 , (2.8c)

δS

δB
= niAi . (2.8d)

The equation of motion for λ implements the Slavnov condition εijFij = 0, i.e. the vanishing

of the third component of the magnetic field: B3 = 0. The equation of motion for B

implements an axial gauge condition niAi = 0.

From equations (2.5) and (2.6), we can deduce the graded commutation relations of

the BRST and VSUSY transformations. By using expressions (2.8), the results can be cast

into the following form:

[s, s] Φ = [δi, δj ] Φ = 0 for Φ ∈ {Aµ, λ, c, c̄, B} (2.9)

– 4 –
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and

[s, δi] Φ = ∂iΦ for Φ ∈ {c, c̄, B} , (2.10a)

[s, δi]AJ = ∂iAJ − FiJ , (2.10b)

[s, δi]Aj = ∂iAj −
εij

θ

δS

δλ
, (2.10c)

[s, δi]λ = ∂iλ +
εij

θ

δS

δAj
−

1

θ2
Di

δS

δλ
−

εij

θ
DKFKj. (2.10d)

Since contact terms appear in the graded commutators, the algebra can only close on-shell.

Note that, apart from the translations, the commutators (2.10b) and (2.10d) involve some

extra contributions which are not related to equations of motion. One can readily verify

that these terms represent a new symmetry of the action (2.1) defined by the following

field variations:

δ̂iAJ = −FiJ , δ̂iλ = −
εij

θ
DKFKj , (2.11)

δ̂iΦ = 0 for all other fields .

Concerning the proof, we only note that the transformations (2.11) and the Bianchi identity

imply

δ̂iFJK = −DiFJK , δ̂iFjK = −DiFjK − DKFij .

Note, that the operator δ̂i does not change the ghost-number.

Together with the BRST transformations, the VSUSY and the translations in the

(x1, x2)-plane,

δ
(transl)
i Φ = ∂iΦ , (2.12)

this new symmetry forms an algebra which actually closes on-shell: the translations com-

mute with all transformations and

[s, s] Φ = [s, δ̂j ] Φ = 0

[δi, δj ] Φ = [δi, δ̂j ] Φ = 0

}

for all fields Φ , (2.13)

[s, δi] Φ = ∂iΦ + δ̂iΦ for Φ ∈ {AJ , c, c̄, B} , (2.14a)

[s, δi] Aj = ∂iAj + δ̂iAj −
εij

θ

δS

δλ
, (2.14b)

[s, δi] λ = ∂iλ + δ̂iλ +
εij

θ

δS

δAj
−

1

θ2
Di

δS

δλ
, (2.14c)

and

[δ̂i, δ̂j ] AJ =
εij

θ
DJ

δS

δλ
,

[δ̂i, δ̂j ] λ =
εij

θ
DJ

δS

δAJ
, (2.15)

[δ̂i, δ̂j ] Φ = 0 for Φ ∈ {Ai, c, c̄, B} .

– 5 –
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3. Generalized BRST operator

We can combine the various symmetry operators defined above into a generalized BRST

operator that we denote by 4:

4 ≡ s + ξ · ∂ + εiδi + µiδ̂i with ξ · ∂ ≡ ξi∂i . (3.1)

Here, the constant parameters ξi and µi have ghost-number 1 and εi has ghost-number 2.

The induced field variations read as

4Ai = Dic + ξ · ∂Ai , (3.2a)

4AJ = DJc + ξ · ∂AJ + µiFJi , (3.2b)

4λ = −ig [λ, c] + ξ · ∂λ + εi εij

θ
nj c̄ + µi εij

θ
DKF jK , (3.2c)

4c =
ig

2
[c, c] + ξ · ∂c + εiAi , (3.2d)

4c̄ = B + ξ · ∂c̄ , (3.2e)

4B = ξ · ∂B + ε · ∂c̄ , (3.2f)

and imply

4FiJ = −ig [FiJ , c] + ξ · ∂FiJ − µkDiFkJ .

Imposing that the parameters ξi, εi and µi transform as

4ξi = 4µi = −εi , 4εi = 0 , (3.3)

we conclude that the operator (3.1) is nilpotent on-shell:

42Ai = εj εij

θ

δS

δλ
, (3.4a)

42AJ =
µiµj

2

εij

θ
DJ

δS

δλ
, (3.4b)

42λ =
µiµj

2

εij

θ
DJ

δS

δAJ
+ εi εij

θ

δS

δAj
− εi 1

θ2
Di

δS

δλ
, (3.4c)

42c = 42c̄ = 42B = 0 . (3.4d)

4. Slavnov-Taylor and Ward identities

The Ward identities corresponding to the various symmetries of the action can be gathered

into a Slavnov-Taylor (ST) identity expressing the invariance of an appropriate total action

Stot under the generalized BRST transformations (3.2), (3.3). In this respect, we introduce

an external field Φ∗ (i.e. an antifield in the terminology of Batalin and Vilkovisky [11]) for

each field Φ ∈ {Aµ, λ, c} since the latter transform non-linearly under the BRST variations

— see e.g. reference [9]. We note that the external sources A∗µ and λ∗ have ghost-number

−1 whereas c∗ has ghost-number −2.

– 6 –
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4.1 ST identity

In view of the transformation laws (3.2) and (3.3), the ST identity reads as

0 = S(Stot) ≡

∫

d4x

{

∑

Φ∈{Aµ,λ,c}

δStot

δΦ∗

δStot

δΦ
+ (B + ξ · ∂c̄)

δStot

δc̄
(4.1)

+ (ξ · ∂B + ε · ∂c̄)
δStot

δB

}

− εi

(

∂Stot

∂ξi
+

∂Stot

∂µi

)

.

This functional equation is supplemented with the gauge-fixing condition

δStot

δB
= niAi . (4.2)

By differentiating the ST identity with respect to the field B, one finds

0 =
δ

δB
S(Stot) = GStot − ξ · ∂

δStot

δB
, with G ≡

δ

δc̄
+ ni δ

δA∗i
,

i.e., by virtue of (4.2), the so-called ghost equation:

GStot = ξ · ∂ (niAi) . (4.3)

The associated homogeneous equation GS̄ = 0 is solved by functionals S̄[Â∗i, . . . ] which

depend on the variables A∗i and c̄ through the shifted antifield

Â∗i ≡ A∗i − nic̄ . (4.4)

Thus, the functional Stot[A,λ, c, c̄, B ;A∗, λ∗, c∗; ξ, µ, ε] which solves both the ghost equa-

tion (4.3) and the gauge-fixing condition (4.2) has the form

Stot =

∫

d4x (B + ξ · ∂c̄)niAi + S̄[A,λ, c ; Â∗i, A∗J , λ∗, c∗; ξ, µ, ε] , (4.5)

where the B-dependent term ensures the validity of condition (4.2).

By substituting expression (4.5) into the ST identity (4.1), we conclude that the latter

equation is satisfied if S̄ solves the reduced ST identity

0 = B(S̄) ≡
∑

Φ∈{Aµ,λ,c}

∫

d4x
δS̄

δΦ̂∗

δS̄

δΦ
− εi

(

∂S̄

∂ξi
+

∂S̄

∂µi

)

. (4.6)

Here, Φ̂∗ collectively denotes all antifields, but with A∗i replaced by the shifted anti-

field (4.4). Following standard practice [9], we introduce the following notation for the

external sources:

ρµ ≡ A∗µ , γ ≡ λ∗ , σ ≡ c∗ , ρ̂i = Â∗i .

– 7 –
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It can be checked along the usual lines (e.g. see [9]) that the solution of the reduced ST

identity (4.6) is given by

S̄ =

∫

d4x

{

−
1

4
FµνFµν +

θ

2
λεijFij

+ρ̂i (Dic + ξ · ∂Ai) + ρJ
(

DJc + ξ · ∂AJ + µiFJi

)

+ γ
(

−ig[λ, c] + ξ · ∂λ + µi εij

θ
DKF jK

)

+ σ

(

ig

2
[c, c] + ξ · ∂c + εiAi

)

+

(

µiµj

2

εij

θ
(DJρJ) + εi εij

θ
ρ̂j − εi 1

2θ2
(Diγ)

)

γ

}

. (4.7)

Note that

S̄ = Sinv + Santifields + Squadratic ,

where Sinv is the invariant action introduced in (2.1), Santifields represents the linear cou-

pling of the shifted antifields Φ̂∗ to the generalized BRST transformations (3.2a-d) (the

c̄-dependent term being omitted) and Squadratic, which is quadratic in the shifted antifields,

reflects the contact terms appearing in the closure relations (3.4).

4.2 The antighost and ghost equations

Differentiating the total action (4.5)–(4.7) with respect to the ghost field, one obtains

δStot

δc
= Di(ρ

i − nic̄) + DJρJ − ig[λ, γ] + ig[c, σ] + ξ · ∂σ .

By substituting the gauge-fixing condition (4.2) in the niAi - dependent term on the right-

hand side, we obtain the functional identity

δStot

δc
+ ig

[

c̄,
δStot

δB

]

+ n · ∂c̄ = Dµρµ − ig[λ, γ] + ig[c, σ] + ξ · ∂σ , (4.8)

which is called the antighost equation [9, 12]. This equation makes sense as an identity for

the action functional since the right-hand side is linear in the quantum fields. Moreover it

is local, i.e. not integrated, in space-time.

Similarly, differentiating the total action with respect to the antighost field, one obtains

the ghost field equation in functional form:

δStot

δc̄
+ ig

[

c,
δStot

δB

]

+ n · ∂c − ξ · ∂
δStot

δB
= −εi εij

θ
njγ . (4.9)

The fact that both the ghost and the antighost field equations can be cast as such local

functional identities is an expression of the ghost freedom of gauge theories quantized in

an axial gauge [13].

4.3 Ward identities

The Ward identities describing the (non-)invariance of Stot under the VSUSY variations δi,

the vectorial symmetry transformations δ̂i and the translations ∂i can be derived from the

ST identity (4.1) by differentiating this identity with respect to the corresponding constant

ghosts εi, µi and ξi, respectively.

– 8 –
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For instance, by differentiating (4.1) with respect to ξi and by taking the gauge-fixing

condition (4.2) into account, we obtain the Ward identity for translation symmetry :

0 =
∂

∂ξi
S(Stot) =

∑

ϕ

∫

d4x ∂iϕ
δStot

δϕ
, (4.10)

where ϕ ∈ {Aµ, λ, c, c̄, B;A∗
µ, λ∗, c∗}.

By differentiating (4.1) with respect to εi, we obtain

0 =
∂

∂εi
S(Stot) = −

∂Stot

∂ξi
−

∂Stot

∂µi
+

∫

d4x

{

∂ic̄
δStot

δB
+ (B + ξ · ∂c̄)

δ

δc̄

∂Stot

∂εi

+
∑

Φ

[(

δ

δΦ∗

∂Stot

∂εi

)

δStot

δΦ
+

δStot

δΦ∗

(

δ

δΦ

∂Stot

∂εi

)]

}

. (4.11)

From (4.5) and (4.7), we deduce that

∂Stot

∂εi
=

∫

d4x

{

σAi +
εij

θ
ρ̂jγ +

1

2θ2
γDiγ

}

(4.12a)

∂Stot

∂ξi
=

∫

d4x
{

−ρµ∂iAµ − γ∂iλ + σ∂ic
}

(4.12b)

∂Stot

∂µi
=

∫

d4x

{

FiJρJ +
εij

θ
(DKFKj)γ +

εij

θ
µj(DJρJ)γ

}

. (4.12c)

Notice that the right-hand sides of the first two equations are linear in the quantum fields,

which is not the case for the third one. Insertion of these expressions into equation (4.11)

yields a broken Ward identity for VSUSY:

WiStot = ∆i . (4.13)

Here,

WiStot =

∫

d4x

{

∂ic̄
δStot

δB
+ Ai

δStot

δc
+

(

εij

θ

(

nj c̄ − ρj
)

+
1

θ2
Diγ

)

δStot

δλ

+ γ
εij

θ

δStot

δAj
+

(

σ +
ig

θ2
γγ

)

δStot

δρi

}

(4.14)

and

∆i =
∂Stot

∂ξi
+

∂Stot

∂µi
+

∫

d4x
εij

θ
nj (B + ξ · ∂c̄) γ . (4.15)

More explicitly, ∆i = ∆i

∣

∣

∣

ξ=µ=0
+ Bi[ξ, µ] with

∆i

∣

∣

∣

ξ=µ=0
=

∫

d4x

{

−ρµ∂iAµ + σ∂ic − γ∂iλ + γ
εij

θ
njB − ρJFJi − γ

εij

θ
DKF jK

}

Bi[ξ, µ] =

∫

d4x

{

ξ · ∂c̄
εij

θ
njγ +

εij

θ
µj(DJρJ)γ

}

. (4.16)
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Several remarks concerning the results (4.13)–(4.16) are in order. First, we note that

the field variations given by (4.14) extend the VSUSY transformations (2.6) by source

dependent terms. It is the presence of the sources which leads to a breaking ∆i of VSUSY

— cf. the unbroken Ward identity (2.7) for the gauge-fixed action. Second, we remark that

the breaking of VSUSY is non-linear in the quantum fields: the non-linear contributions

are contained in ∆i

∣

∣

ξ=µ=0
and given by

−

∫

d4x

{

ρJFJi + γ
εij

θ
DKF jK

}

= −

∫

d4x
{

ρJ(δ̂iAJ) + γ(δ̂iλ)
}

,

where δ̂i are the vectorial symmetry transformations (2.11). However, these non-linear

breakings (which could jeopardize a non-ambiguous definition of the theory) are contained

in the derivative ∂Stot/∂µi and are therefore functionally well defined.

Finally, we come to the Ward identity for the vectorial symmetry δ̂i. By differentiating

the ST identity (4.1) with respect to µi and using (4.12c), one finds

∫

d4x

{

− FiJ
δStot

δAJ
−

εij

θ

(

DKFKj + µj DKρK
) δStot

δλ
+ DKρK δStot

δρi

+
εij

θ
DKDKγ

δStot

δρj
−

(

Diρ
I +

εij

θ
DjDIγ + ig

εij

θ

[

F Ij , γ
]

) δStot

δρI

+ ig
εij

θ
µj

[

ρI , γ
] δStot

δρI

}

= −

∫

d4x
εij

θ
εj(DKρK)γ , (4.17)

i.e. we have here a breaking which is linear in the quantum fields.

5. Consequences of VSUSY

The generating functional Zc of the connected Green functions is given by the Legendre

transform2

Zc[jA, jλ, jB , jc, jc̄] = Γ[A,λ,B, c, c̄] +

∫

d4x
(

jµ
AAµ + jλλ + jBB + jcc + jc̄c̄

)

. (5.1)

Thus, we have the usual relations

δZc

δjµ
A

= Aµ ,
δZc

δjλ
= λ ,

δZc

δjB
= B ,

δZc

δjc
= c ,

δZc

δjc̄
= c̄ ,

δΓ

δAµ
= −jµ

A ,
δΓ

δλ
= −jλ ,

δΓ

δB
= −jB ,

δΓ

δc
= jc ,

δΓ

δc̄
= jc̄ , (5.2)

and

δZc

δΦ∗
=

δΓ

δΦ∗
,

∂Zc

∂ξi
=

∂Γ

∂ξi
,

∂Zc

∂εi
=

∂Γ

∂εi
,

∂Zc

∂µi
=

∂Γ

∂µi
. (5.3)

2In the “classical approximation”, the generating functional Γ of the one-particle-irreducible Green

functions is equal to the total classical action Stot. Its Legendre transform Zc generates the connected

Green functions in the tree graph approximation.
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For vanishing antifields, the Ward identity describing the VSUSY (4.13) becomes in

terms of Zc:

WiZ
c =

∫

d4x

{

jB ∂i
δZc

δjc̄
− jc

δZc

δji
A

+
εij

θ
njjλ

δZc

δjc̄

}

= 0 . (5.4)

By varying (5.4) with respect to the appropriate sources, one gets the following relations

for the two-point functions (i.e. the free propagators):

δ2Zc

δji
Aδjλ

∣

∣

∣

∣

∣

j=0

= −
εij

θ
nj δ2Zc

δjc̄δjc

∣

∣

∣

∣

∣

j=0

,
δ2Zc

δji
Aδjν

A

∣

∣

∣

∣

∣

j=0

= 0 . (5.5)

The gauge-fixing condition (4.2) is equivalent to ni δZc

δji
A

= −jB , from which it follows that

ni δ2Zc

δjB(y)δji
A(x)

∣

∣

∣

∣

∣

j=0

= −δ(4)(x − y) . (5.6)

For vanishing antifields, the antighost equation (4.8) can be written as

−n · ∂
δZc

δjc̄
− ig

[

jB ,
δZc

δjc̄

]

= jc ,

and by varying this equation with respect to jc, one concludes that

n · ∂
δ2Zc

δjc(x)δjc̄(y)

∣

∣

∣

∣

∣

j=0

= −δ(4)(x − y) . (5.7)

Note that the same result may be obtained from the ghost equation (4.9) which reads in

terms of Zc (for vanishing antifields and ξi = 0):

−n · ∂
δZc

δjc
− ig

[

jB ,
δZc

δjc

]

= jc̄ . (5.8)

In momentum space, the free propagators of the theory are given by

i∆cc̄(k) = −
1

nk
, i∆AB

µ (k) =
ikµ

nk
, (5.9a)

i∆Aλ
µ (k) =

1

k̃2

(

k̃µ − kµ
nk̃

nk

)

, (5.9b)

i∆A
µν(k) =

−i

k2

[

gµν −
nµkν + nνkµ

nk
+ a

kµkν

(nk)2
+ b(kµk̃ν + kν k̃µ) −

k̃µk̃ν

k̃2

]

, (5.9c)

with (gµν) = diag (1,−1,−1,−1) and3

k̃i ≡ θεijk
j , k̃J ≡ 0 ,

a ≡ n2 −
(nk̃)2

k̃2
, b ≡

nk̃

(nk)k̃2
. (5.10)

One can easily check that these propagators obey the conditions (5.5), (5.6) and (5.7).
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A

λ
A

= 0

A

Figure 1: The λAA-vertex contracted with a photon propagator vanishes.

A

λ
A

A

A
λ

Figure 2: Building a Feynman loop graph with a λAA-vertex is impossible without a photon

propagator.

Π
ρσ

Figure 3: The “problematic” 2-loop graph vanishes in this case.

As we are now going to show, the remarkable outcome of the identities (5.5), (5.6)

and (5.7) is that they are sufficient for killing all possible IR divergences in the radiative

corrections. The second relation in (5.5), which states that the photon propagators ∆A
iν

vanish, has an important consequence. Indeed, since the λAA-vertex is proportional to θij,

all Feynman graphs which include a λAA-vertex contracted with an internal photon line

must cancel (cf. figure 1). But since it is obviously impossible to construct a Feynman graph

(except for a tree graph) including λAA-vertices which do not couple to internal photon

propagators, all loop corrections involving the λAA-vertex have to vanish! Note, that a

mixed photon-λ propagator contracted with a λAA-vertex leads to the necessity of another

λAA-vertex, and so in order to build a closed loop, photon propagators are necessary (see

figure 2). Hence, the Feynman rules involving the λ-field do not enter the loop corrections

of the photon n-point function. In particular, the IR-problematic graph mentioned in our

previous paper [5] and depicted in figure 3 is absent for our choice of gauge. Now that we

have shown that the λ-field plays no role in the radiative corrections of the gauge field, the

absence of IR-divergences follows from the line of arguments given in reference [3].

3We have k̃2 = −θ2(k2
1 + k2

2), nk = −(n1k1 + n2k2), nk̃ = θ(n1k2 − n2k1) and i∆AB
µ (x − y) =

−i δ2Zc

δjB(y)δj
µ
A

(x)

˛

˛

˛

j=0
.
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From these considerations, it should also become obvious that all loop corrections to the

λ-propagator and the mixed λ-photon propagator vanish, leaving the tree approximation

as the exact solution for this sector. Furthermore, equations (5.6) and (5.7) provide exact

solutions to the AB propagator and the ghost propagator [7]. Also notice that the first of

equations (5.5) is consistent with the considerations above: it gives us the exact solution

for the mixed λ-photon propagator once the solution for the ghost propagator is found

from (5.7).

6. Conclusion

As discussed in section 2, the U(1)-NCGFT with Slavnov term and with an appropriate

axial gauge-fixing exhibits a far richer symmetry structure than initially expected. In par-

ticular, it admits a linear VSUSY which is similar to the one present in the 2-dimensional

BF model, provided one chooses the deformation matrix θµν to be space-like and the axial

gauge-fixing vector nµ to lie in the plane of the noncommuting coordinates. While this

VSUSY yields a superalgebra (which includes the BRST operator s and the translation

generator in the noncommutative plane), it differs from the one present in the noncom-

mutative 2-dimensional BF model by the fact that it contains an additional nonlinear

vectorial symmetry (given by the transformation laws (2.11)).

As a consequence of the identities for the free propagators which follow from the

VSUSY, all loop corrections become independent of the λAA-vertex. This is the reason

why the theory in our particular space-like axial gauge is finite, as pointed out by Slavnov

in reference [3].

Thus, the absence of IR singularities in a NCGFT can be achieved by other means

than extending it to a Poincaré supersymmetric theory4 (as was already emphasized by

Slavnov [3]), namely by modifying it physically by adding the Slavnov term (which leads

to the presence of VSUSY that is characteristic for a class of gauge-fixings). One may

note that a supersymmetry is again responsible for the cancellation of IR singularities.

But, contrary to the Poincaré supersymmetry which is physical, VSUSY is not physical,

its existence following from the specific choice we have made for the gauge-fixing.5
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